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A number of theoretical and experimental studies [1-7]  have been 
devoted to the problem of the disintegration of a liquid jet flowing 
into a gas medium. However, the disintegration process has been stud- 
ied only at low exit velocities. Moreover, all the theoretical analyses 
have been based on the method of small perturbations, with the assump- 
tion that the surface deformations are small as compared with the ini-  
tial radius of the jet. The author has attempted an experimental and 
theoretical study of jet disintegration without assuming that the defor- 
mations are small. 

Figure 1 shows the basic disintegration character is t ic- the length 
of the continuous part of the jet L ( ram)-as  a function of the exit 
velocity U0 (m/see)  [1]. 

The linear initial section corresponds to disintegration under the 
influence of capillary forces: the t ime required for the jet to break 
down into droplets is constant. The effect of a gas medium is to re-  
duce the disintegration t ime.  The curve has a first extremum and a 
descending branch. 

In this range of velocities the surface deformations of the jet are 
mainly axisymmetric. Asymmetric perturbations, which beyond a 
certain transition velocity give rise to wavelike deformations, are 
also observed. An experimental dependence for this range of veloei = 
ties was first obtained in [1]. 

The first analysis for an ideal  liquid was made by Rayleigh [2], 
and for a viscous liquid by Weber [1]. However, the investigation of 
disintegration over a wider range of velocities is of particular practical 
interest. New experimental results have recently been obtained [3, 4]. 
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Fig. 1 

Figure 2 shows the length L (mm) of the continuous part of the jet [4] 
at velocities corresponding to a pressure drop p from zero to one thou= 
sand atmospheres. The curve has two linear sections and five extrema. 

The existing studies do not explain these experimental results. 
The reason is that the electro-contact  method [4] of determining the 
continuous part at high-velocities does not permit the representation 
of the disintegration process as a whole, and at high velocities ordinary 
photography is not very effective. Lack of understanding of the disin- 
tegration process has so far prevented the development of a theoretical 
model of the disintegration effect in the region of wavelike deforma- 
tions. 

Accordingly, the author has designed and carried out the following 
experiments. A jet of water flowed from a nozzle at a velocity calcu- 
lated to give a sharp image in frame photography. A relative velocity 
of the jet and medium was obtained by creating an accompanying 
flow or counterflow. This made it possible to obtain sharp photographs 
of the deformation processes corresponding to high exit velocities, 
namely, axisymmetric disintegration (Fig. 3), wavelike deformations 
(Fig. 4), and the beginning of atomization (Fig. 5). In addition, the 
length of the continuous part of the jet was measured by the electro-  
contact method in the absence of an artificial gas flow. To establish 

the three-dimensional shape of the jet, it was filmed in two projee= 
tions. 
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Fig. 2 

The following results, which supplement the known disintegration 
picture [1], were obtained. In the ease of wavelike deformations, 
after the appearance of kinks (by a "kink" we mean an element  of 
the twisted jet) axisymmetrie deformations, which determine the 
disintegration t ime, begin to develop in the jet.  At first, kinks devel-  
oped in planes passing through the axis of the jet.  Subsequently, in= 
teraetion of these kinks distorts their original plane shape. 

In the presence of large initial perturbations (forced oscillations 
of the nozzle) the wavelength is determined by these perturbations. 
The experiments made it possible to clarify the nature of the curve 
shown in Fig. 2. 

The first minimum corresponds to the appearance of wavelike 
deformations. The wavy jet produces an accompanying motion of 
the surrounding medium. In this case the relative velocity falls, and 
the ensuing axisymmetrie deformations lead to disintegration of the 
jet. The second linear section corresponds to capillary disintegration 
and is similar to the first section. This linear section is followed by 
a second maximum and a descending branch due to the influence of 
the gas-dynamic force. 

With increase in velocity the surface of the jet becomes unstable 
for short waves, leading to the separation of droplets. This causes 
even greater entrainment of the surrounding medium. The length of 
the jet again increases, reaches a third maximum, and decreases. 

In the presence of axisymmetric deformations cosinusoidal surface 
shapes and shapes with a cylindrical central section are observed. The 
deformation of the latter is interrupted by the appearance of perturba- 
tions on the cylindrical part before disintegration. 

Fig. 3 

In the presence of wavelike deformations the curvature of the jet 
forces the enveloping gas flow to accelerate on the convex sections, 
which leads to the development of kinks. The frontai part of a devel-  
oped kink is deformed by a eounterflow, leading to the formation of 
jet shapes resembling steps and loops. 

w  W e  s h a l l  f i r s t  c o n s i d e r  a x i s y m m e t r i c  d e f o r m a -  

t i o n s .  A j e t  o f  i n c o m p r e s s i b l e  f l u i d  o f  r a d i u s  a a n d  

d e n s i t y  Pi m o v e s  r e l a t i v e  t o  a n o t h e r  i n c o m p r e s s i b l e  

f l u i d  o f  d e n s i t y  P2 a t  t h e  c o n s t a n t  v e l o c i t y  U0, (r i s  t h e  
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sur face  t en s ion  at  the in t e r f ace .  By v i r tue  of the s y m -  
m e t r y  of the p rob l em the equat ions of mot ion  may con-  
ven ien t ly  be wr i t t en  in  a cy l ind r i ca l  coord ina te  s y s t e m  

du t 0 p + ~ F 0 ~ u + i  0 /  0. ,n  
d-T = p~ az LOz~ 7 " ~ - ( r - ~ ) J  , (1.1) 

a- i -=  ~ o~ + ~ ' l ~ - t - - o 7 ~ , ~  Or ]J'  (1.2)  

the equat ion of cont inui ty  is 

Ou I 0 
07 + 7~;r (rv) = O. (1.3) 

la t ion for the wavelength of the pe r tu rba t ion .  We r e p -  
r e s e n t  the r ad ius  of the f r ee  su r face  R in the form 
(Fig. 6) 

B = ao + a~ cos k z .  (1.8) 

F r o m  the c ons t a n t - vo l ume  condi t ion it follows that  

a ~ = ao 2 + ' l~a,,  a ~/~-33< ao < a,  

O g a , .~  V ~ a .  (1.9) 

Ins tead  of (1,3) in our  approx imat ion  it  is  m o r e  
convenient  to wr i t e  

aSo__T + ~~ (Su) = 0 (s = :trig. (1.10) 

Fig. 4 

Here  v is the r ad i a l  ve loc i ty  component ,  and u is  
the component  in  the d i r ec t ion  of the jet  axis .  We i n -  
t roduce  the d i m e n s i o n l e s s  quant i t ies  

z u v r t (1.4) 
g l  = " ~ 0  ' Ul = ~--, Vl = - ~ ,  ri  = a '  ti = "T" 

Here l 0 is the wavelength of the per tu rba t ion ,  u ~ 
is  the average  ve loc i ty  over  the c r o s s  sect ion,  v ~ is  
the average  ra te  of deformat ion ,  and T is  the d i s in -  
t eg r a t i on  t ime .  

F r o m  (1.3) i t  follows that 

vo U~ 
= -//-o" (1.5) 

Subst i tu t ing (1.4) and (1.5) in (1.1) and (1.2), at T = 
= lo/u ~ we obta in  

, 7  + 
rruo]o ~ r u o l  i O (rlOUx~l 

r uo?a I 0721 + u~ /~'~ 
vt -~l  p~ Or -{- 

r 
tL Zo 8 J az~ 2 -~ Ll'~J 

When l 0 >> a, omi t t ing  s m a l l  t e r m s ,  we have 

Ou au Ou I Op I o {r ou'l 
o - - T + u - ~ z + v ~ - -  p-~-o--~- + v-;'~-F-~ -g7/, 

ap 
0-7 = 0.  (1.6) 

We shal l  neglect  the va r i a t i on  of axial  ve loc i ty  over  
the c r o s s  sec t ion  of the jet, and work with the average  
ve loc i ty  u ~ Omit t ing  the un impor t an t  supe r sc r ip t ,  
f rom (1.6) we obta in  

ou 0u t ap ( 1 . 7 )  
0-7 -{- u-oz -~ p~ az " 

Thus,  we have e l imina ted  the v i s cos i t y  t e r m s  f rom 
the equat ion of motion.  Never the less ,  in the f inal  so lu-  
t ion the v i s cos i t y  effect is taken into account in the r e -  

In teg ra t ing  (1.10) with r e s p e c t  to z with the follow- 
ing boundary  condi t ions:  

z = O, u = O z = V~lo, u = O 

and us ing  (1.9), we obtain,  neg lec t ing  Oao/Ot, 

t 0al (2a0sinkz + t ) u kl~ Ot - ~ a l s i n 2 k z .  (1.11) 

Subst i tu t ing (1.11) into (1.7) and in teg ra t ing  with 
r e s p e c t  to z, for the d i m e n s i o n l e s s  d i sp lacemen t  h = 
= a l ia  we obta in  the equat ion 

0~h It  4h ( l  t - h  2 ~-q/oh~ 
at* -{- Lh (t~-h2)ikTln t + h  t - - h i /  j \ g - i ]  = 

(po--p)k~ ( i  ln t - - h  2 )-t 
- -  p~ t + h  i - - h  ~ ( 1 . 1 2 )  

which is l i n e a r  in (0h/Ot) 2. Here  the value P0 c o r r e -  
sponds to z = 0, and p to the value z = 1o/2. 

Fig.  5 

The p r e s s u r e  p is  exp re s sed  in t e r m s  of the p r i n -  
cipal  r ad i i  of c u r v a t u r e  of the n o r m a l  sect ion,  R l and 
R 2, as follows: 

p = oZ = z ( t / R  I + t / B  d . 

We can s impl i fy  the e x p r e s s i o n  

__ ( t + m  2) t + ( t + q 2 ) r - 2 r q s  
(t + q~ + m2) "1~ 

ol 0-7 o! 021 oV 
r n = - ~ - ,  s =~--~-z' q = ~ - z '  r = ~ - ,  , t =  az*l 

for the sur face  y = l (z, x) = [R ~ (z) - -  x2] '/, in the case  
of a x i s y m m e t r i c  de fo rmat ions .  Without loss  of g e n e r -  
ality,  we se t  x = 0; then 

7. O~R j.  p n ~1 - ' / , _  i I t  + / on T'] -'/' 
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Using (1.8), in the region  of cap i l l a ry  d i s i n t e g r a -  
t ion we obtain 

t , , o - p -  ( , . la)  

Pass ing  to the new independent  va r i ab le  �9 = 

= k 2 t  ~/2a~Tpl f rom Eq. (1.12) (with the in i t ia l  condi-  
t ions h = h 0 and dh/dz  = 0 at r = 0), we obtain 

"c = "~ (ka, ho) . (1.14) 

F r o m  (1.8) and (2.3), subs t i tu t ing  for R its  mean  
value over the length a, we obtain 

Uo (2 4) 
= al Ko'(ka) " 

lR 

[ _  ~ z  
I/# l o 

The effect of the in i t ia l  pe r tu rba t ions  on the d i s in -  
t egra t ion  t ime is  es t imated  us ing  the s impl i f ied  equa-  
tion with h << 1: 

a2h t_ ah (t - -  a2k~) h.  (1.15) 

For  the in i t ia l  deformat ion  per iod the solut ion of 
(1.15) has the form 

/ 2 \'/~" [ 2h'2 ~ (1.16) 

w We shal l  cons ider  the effect of the su r round ing  
med ium on the d i s in tegra t ion  t ime .  We as sume  that 
the su r round ing  gas is  inv isc id  and i n c o m p r e s s i b l e .  
In view of the s y m m e t r y  of mot ion the veloci ty  poten-  
t ia l  sa t i s f i es  the equat ion 

02(p t 0 / 0qa\ 
Aq~ =-aT-,~ + 7 ~ V ~ )  = o. (2.1) 

For  convenience ,  we shal l  a s s u m e  that  the jet is 
s ta t ionary ,  while the gas moves  at ve loc i ty  U 0 at in -  
f ini ty.  The e x p r e s s i o n  

ep ---- ~K o (kr) sin k z  - -  Uoz (2.2) 

wil l  be the solut ion of (2.1) sa t i s fy ing  this condit ion;  
K 0 is  a z e r o - o r d e r  Macdonald function.  

I/~ to t/z ~o 

Fig. 6 

For  the ve loc i t i es  we obta in  

aqJ = _ ~k.Ko' (kr) sin ks ,  

ar ~kKo (kr) cos ks  ~ Uo.  
Oz 

Cons ide r ing  that  the veloci ty  of longi tudinal  mot ion  
is much g r e a t e r  than the t r a n s v e r s e  veloci ty,  while 
the va r i a t i on  of R along the length is  l a rge  if  the de-  
fo rma t ions  a re  cons ide rab le ,  we can wr i t e  the bound-  
a ry  condi t ion at the f ree  su r face  in the fo rm 

Fig. 7 

The p r e s s u r e  is found f rom 

0(p 1 
p = p2 -#/- - -  ~ P2 (v" + u2), 

o~ t [k2,82Ko'~ (ka) sin 2 kz  + Uo 2 P = 9"2 ~ y  Ko (ka) sin k z  - -  y P2 

- -  2U0~K0' (ka) k cos kz  + p2~ 2 k2Ko 2 (ka) cos ~ k z ] .  (2.5) 

The p r e s s u r e  drop between the points z = 0 and 
z = lo /2  is equal to 

 o( oI- [2- " hi p - - p o = e ~ o ~ a ~ n  a ~ c ~  . (2.6) 

When h << 1 

'~ "~ 2 Ko(ka) 
P ~ P o  = ~P~Uo ~ k a h .  (2.7) 

F r o m  (1.13) and (2.7) at h << 1 we obtain the con-  
dition for the appearance  of a x i s y m m e t r i c  de fo rma-  
t ions:  

U~ = ka ( a2k2 - -  1 '~ Ko' (k=) •  z \ ~k~ / ~ "  (2.8) 

When U 0 = 0 we get d i s in teg ra t ion  under  the inf lu-  
ence of cap i l l a ry  forces .  This  co r r e sponds  to ak = 1. 

All pe r tu rba t ions  longer  than specif ied by condit ion 
(2.8) a re  uns tab le .  However, the highest  deformat ion  
ra te  is  possessed  by waves of a per fec t ly  defini te  
length.  The co r r e spond ing  condi t ion is  obtained f rom 
(1.12), (1.13), and (2.7): 

0 
o (ka) (Pc - -  P) = O. (2.9) 

The gene ra l  exp re s s ion  for the opt imal  wave n u m -  
be r  k is  compl icated,  but, cons ide r ing  that  in the 
r ange  in ques t ion  Cup to the appearance  of wavel ike 
deformat ions)  K o ( k a ) / K ~ ( k a )  v a r i e s  only slightly,  for 
a jet  of l ow-v i scos i ty  fluid we can obtain approx imate ly  

3 Ko(ka) x. z 
k a - -  4 Ko, ik + + (9 + 7 )  ' '" (2 .10 t  

For  the opt imal  de fo rmat ions  under  the in f luence  
of c a p i l l a r y  forces  the value x = 0 gives the r e s u l t s  
obtained by Rayleigh [2]: 

OR OR OR ka  ---- - ~  2n v -  - a - - k - - y ; U o ~ U o  at r = R .  (2.3) , l o = ~ - = 2 V ' 2 n a .  (2,11) 
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F o r  a v i s c o u s  f luid the  w a v e l e n g t h  of  the  o p t i m a l  
d e f o r m a t i o n  was  ob t a ined  by W e b e r  [1]: 

:,n, _ 7' ~ = n 3 _~ ) ]'  o 

I V :  ~,,\~--]r" [2OVt~',', , l~ - -  2U0plam (2 .12)  

H e r e  ~h is  the  v i s c o s i t y  of  the  f luid,  W is  the  W e b e r  
n u m b e r ,  and R is  t he  R e y n o l d s  n u m b e r .  

80 +' " 

M' zlg . + -1  

v-3 

o I I 3 

Fig .  8 

T h e  equa t i on  of  e q u i l i b r i u m  of  t he  g a s - d y n a m i c  and 
c a p i l l a r y  f o r c e s  f o r  the  c u r v e d  je t  [5] 

K~ (k a) 
~[tz - -  32 - -  (ka)2] = P'zakU"2 Ks' (ka) 

e n a b l e s  us  to ob t a in  the  v e l o c i t y  o f  t r a n s i t i o n  to w a v e -  
l ike  d e f o r m a t i o n s .  In  t h i s  c a s e  

,~ = 1, ka <~  1, K1 (ka) 
1Q' (ka) ~ -- ka,  

In t he  g e n e r a l  c a s e  of  s y m m e t r i c a l  d i s i n t e g r a t i o n  

P0 - P in  e x p r e s s i o n  (1.4)  r e p r e s e n t s  t he  s u m  of (1 .13)  
and (2 .6) .  

w We s h a l l  now c o n s i d e r  w a v e l i k e  d e f o r m a t i o n s .  

With t h e  a p p e a r a n c e  in t he  j e t  o f  w a v e l i k e  p e r t u r b a -  
t i o n s  t he  r e l a t i v e  v e l o c i t y  of  t he  j e t  and the  m e d i u m  

b e g i n s  to  d e c r e a s e .  T h i s  l e a d s  to the  a p p e a r a n c e  o f  
a x i s y m m e t r i c  d e f o r m a t i o n s  wi th  a d i f f e r e n t  w a v e -  
l eng th .  When the  r e l a t i v e  v e l o c i t y  i s  r e d u c e d  by an 
a c c o m p a n y i n g  flow, t he  d e f o r m a t i o n s  wi th  ka > 1 m u s t  

be  s u p p r e s s e d  by  the  s u r f a c e  t e n s i o n .  H o w e v e r ,  o b -  
s e r v a t i o n  shows  tha t  such  d e f o r m a t i o n s  a r e  not  s u p -  
p r e s s e d .  The  c o s i n u s o i d a l  shape  of  t he  s u r f a c e  b e -  

c o m e s  u n s t a b l e ,  and i s  r e p l a c e d  wi th  an  a x i s y m m e t r i c  
shape  wi th  a c e n t r a l  c y l i n d r i c a l  s e c t i o n  (see  F i g .  7). 
F o r  such  s h a p e s  the  v a r i a t i o n  o f  the  r a d i u s  of  t he  f r e e  

s u r f a c e  at  0 -< z <- l o / 4  i s  on ly  s l i g h t .  Thus ,  a f t e r  i n -  
t e g r a t i n g  wi th  r e s p e c t  to  z w i th  b o u n d a r y  c o n d i t i o n s  
u = 0 at  z = 0, we  can  ob t a in  f r o m  (1 .11)  the  f o l l o w i n g  
e x p r e s s i o n  f o r  t he  v e l o c i t y :  

z OR 
u = - - 2  -R-T/-" (3 .1)  

We s u b s t i t u t e  (3 .1)  in (1 .7)  and i n t e g r a t e  (1 .7)  

wi th  r e s p e c t  to z in the  i n t e r v a l  f r o m  0 t o / 0 / 4 :  

1,,~ i S (OR~ OU/ ]=.p,,--p 
16R L?T ',-0/-1 -- Ot'~ j m 

(3.2) 

For the pressure drop we have 

z : = 0 ,  p 0 = ~ ,  

l0 z z (a - - / ~ )  (3.3) 
z =  ~ ,  P ' -  ~ ,  P o - - P - - -  aR 

We t r a n s f o r m  Eq.  (3.2)  to d i m e n s i o n l e s s  p a r a m e -  
t e r s :  

02h 3 / Oh ,,2 
o<-' ~ )  = h - - I  

= 4 2z J % 
(3 .4)  

The  so lu t i on  of  (3 .4)  wi th  i n i t i a l  c o n d i t i o n s  Oh/  
/ 0T  = 0, h = h 0 at T = 0 can  be  w r i t t e n  in the  f o r m  

0 

)] ,. 
ho 

(3.5)  

E x p r e s s i o n  (3.5)  d e t e r m i n e s  the  d i s i n t e g r a t i o n  
t i m e  of  w a v e l i k e  d e f o r m a t i o n s  on the  l i n e a r  s e c t i o n .  

To  e s t i m a t e  the  e f f e c t  of  the  i n i t i a l  p e r t u r b a t i o n s  
we se t  h = 1 + A h ,  wi th  Ah << 1, and, n e g l e c t i n g  the  
c u b e s  of  s m a l l  q u a n t i t i e s ,  f r o m  (3.4)  we  ob t a in  

lnh  / ho 
-- V - ~  (3.6)  

We shall now consider some examples. 
i .  The length of the continuous part of the jet in the region of 

capillary disintegration, in accordance with (1.14), is expressed as 
follows: 

W 
L = Uot = ~ "r (ka, h0), (3.7) 

In Heinlein's experiments [I] water with the characteristics: o/p1 z 
z 70.8 cmS/seJ; 2a = 0.012-0.104 cm was taken as the low-viscosity 
fluid. 

g50 L 

~ x ~ X X x  x X ~ x ^  x X 

c ~ ._g_ 
~ ~ ~ 0 -3  

x ;Og 
3 zl 5 6 

Fig. 9 

The observed wavelengths of the axisymmetric perturbations had 
values lo/2U r. 4.3-7.  The values of r, computed for h 0 = 10 "~- and 
h 0 -- 10"s corresponding in order of magnitude to the experiments of 
[6] and the measurements of [1], are 

71 = 7.25, L1 = tt.7 aW, 

Tz = 9.46, L2 = 23.6 a w l  

The calculated and experimental [1, 3, 4] results are presented 
in Fig. 8: 1) 2 a = l m m [ 4 ] ,  2) 2a=0.66 mm[7], 3) 2 a = 0 . 5 4 m m  
[3], 4) 2a = 0.51 mm [1]; water. 

The low-viscosity condition 

3W/R  . ~  t 

for water is almost always satisfied. 

(3.8) 
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2. When 3W/R >> 1 in the case of a high-viscosity fluid it follows 
from (1.12) that 

Then 

(3.9) 

i /Pl a~ ~1~ 
t = ~ - - t ~  ) 'r(ho). (3.10) 

It follows from (3.10) that for the same initial jet radius the ratio 
t l / t  2 for two high-viscosity fluids is given by 

tl Iol W,, (3o11) 
t., lo2W2 

We shall compare the experimental  results [i] for jets of glycerine 
and castor oil (az/Pt = 35.7 cmS/secZ; o~/pz = 52.7 cmS/seJ ;  101 = 
= 6 0 a ;  102 = 12a). 

The ratio (3.11) gives a value t l / t  2 = 6 corresponding to results of 
the experiments. Since 

/6W\ '& 
lo =-~<~ L~ -  J , 

the t ime to disintegration 

~ -  12~ 3 \-% 
t = a  V 6D, L;77 ) ~ ~,.~, (3.12) 

which corresponds to experiment [1]. 
3. In the presence of wavelike deformations, toward the end of 

deformation the velocity of  the axisymmetric deformations, in a c -  
cordance with (3.4), slows. Observations show that in the final mo-  
ments shortwave perturbations that break up the jet appear on the 
cylindrical section. Retardation of deformation begins to exert an 
effect at h = 0.1. Therefore the calculations were performed for 
O . I - < h - < h o  . 

We calculated values of r at h 0 = 0.99 and h 0 = 0.999. 
The corresponding values are r l  = 1.88, ~-2 = 2.54. The second 

maximum of the curve may be displaced along the linear section~ 
Its position depends on the accompanying flow, determined by the 
number of kinks in the jet, which, in its turn, depends on the initial 
perturbations. 

However, in each individual case the first and second maxima 
occur at the same value of x .  This condition makes it possible to 
express the velocity corresponding to the maximum length of the 
continuous part in terms of the exit parameters: 

\2ap~ / " (3.13) 

Relation (3.13) is confirmed by experiments with diesel fuel [3], 
On the section where gas-dynamic influences predominate (de- 

scending branch of curve) at ~ >> 1 we have the following value~ of 
the t ime and range from (1,14) and (3.6), respectively: 

The exit velocity exerts an effect only through the wavelength l 0  ̀
There is a discrepancy between the condition for the occurrence 

of wavelike deformations (2.13) and experiment.  This discrepancy 
may be related to the assumption that the medium can be replaced 
by an ideal fluid, whereas in reality the gas flow is turbulent. 

For a low-viscosity fluid, instead of (2.13), the relation 

i 

gives good agreement with experiment.  
Figures 8 and 9 present the results of calculations for all sections 

of axisymmetrie and wavelike deformations and the experimental 
results obtained by the author and in [1, 4, 7]. At large x (Fig. 9) 
the values of 2a correspond to: 1) 2n = 2 ram, 2) 2a = 4 m m - a u t h o r ' s  
experiments, 3) 2n = 1 mm [4]; water. 
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