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DISINTEGRATION OF A LIQUID JET

V. A. Ivanov
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A number of theoretical and experimental studies [1-7] have been
devoted to the problem of the disintegration of a liquid jet flowing
into a gas medium. However, the disintegration process has been stud-
ied only at low exit velocities. Moreover, all the theoretical analyses
have been based on the method of small perturbations, with the assump-~
tion that the surface deformations are small as compared with the ini~
tial radius of the jet. The author has attempted an experimental and
theoretical study of jet disintegration without assuming that the defor~
mations are small.

Figure 1 shows the basic disintegration characteristic—the length
of the continuous part of the jet L (mm)—as a function of the exit
velocity Uy (m/sec) [1].

The linear initial section corresponds to disintegration under the
influence of capillary forces: the time required for the jet to break
down into droplets is constant. The effect of a gas medium is to re-
duce the disintegration time. The curve has a first extremum and a
descending branch.

In this range of velocities the surface deformations of the jet are
mainly axisymmetric. Asymmetric perturbations, which beyond a
certain transition velocity give rise to wavelike deformations, are
also observed. An experimental dependence for this range of veloci-
ties was first obtained in [1].

The first analysis for an ideal liquid was made by Rayleigh [2],
and for a viscous liquid by Weber [1]. However, the investigation of
disintegration over a wider range of velocities is of particular practical
interest. New experimental results have recently been obtaired [3, 4).
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Figure 2 shows the length L (mm) of the continuous part of the jet [4]
at velocities corresponding to a pressure drop p from zero to one thou-
sand atmospheres. The curve has two linear sections and five extrema.

The existing studies do not explain these experimental results.

The reason is that the electro-contact method [4] of determining the
continuous part at high-velocities does not permit the representation
of the disintegration process as a whole, and at high velocities ordinary
photography is not very effective. Lack of understanding of the disin-
tegration process has so far prevented the development of a theoretical
model of the disintegration effect in the region of wavelike deforma-
tions.

Accordingly, the author has designed and carried out the following
experiments. A jet of water flowed from a nozzle at a velocity calcu-
lated to give a sharp image in frame photography. A relative velocity
of the jet and medium was obtained by creating an accompanying
flow or counterflow. This made it possible to obtain sharp photographs
of the deformation processes corresponding to high exit velocities,
namely, axisymmetric disintegration (Fig. 3), wavelike deformations
(Fig. 4), and the beginning of atomization (Fig. 5). In addition, the
length of the continuous part of the jet was measured by the electro~
contact method in the absence of an artificial gas flow. To establish

the three-dimensional shape of the jet, it was filmed in two projec-

tions.
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The following results, which supplement the known disintegration
picture [1], were obtained. In the case of wavelike deformations,
after the appearance of kinks (by a "kink” we mean an element of
the twisted jet) axisymmetric deformations, which determine the
disintegration time, begin to develop in the jet. At first, kinks devel-
oped in planes passing through the axis of the jet. Subsequently, in-
teraction of these kinks distorts their original plane shape.

In the presence of large initial perturbations (forced oscillations
of the nozzle) the wavelength is determined by these perturbations.
The experiments made it possible to clarify the nature of the curve
shown in Fig. 2.

The first minimum corresponds to the appearance of wavelike
deformations. The wavy jet produces an accompanying motion of
the surrounding medium. In this case the relative velocity falls, and
the ensuing axisymmetric deformations lead to disintegration of the
jet. The second linear section corresponds to capillary disintegration
and is similar to the first section. This linear section is followed by
a second maximum and a descending branch due to the influence of
the gas-dynamic force.

with increase in velocity the surface of the jet becomes unstable
for short waves, leading to the separation of droplets. This causes
even greater entrainment of the surrounding medium. The length of
the jet again increases, reaches a third maximum, and decreases.

In the presence of axisymmetric deformations cosinusoidal surface
shapes and shapes with a cylindrical central section are observed. The
deformation of the latter is interrupted by the appearance of perturba-
tions on the cylindrical part before disintegration.
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In the presence of wavelike deformations the curvature of the jet
forces the enveloping gas flow to accelerate on the convex sections,
which leads to the development of kinks. The frontal part of a devel-
oped kink is deformed by a counterflow, leading to the formation of
jet shapes resembling steps and loops.

§1. We shall first consider axisymmetric deforma-
tions. A jet of incompressible fluid of radius a and
dengity p; moves relative to another incompressible
fluid of density p, at the constant velocity Uy, o is the
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surface tension at the interface. By virtue of the sym-
metry of the problem the equations of motion may con-
veniently be written in a cylindrical coordinate system

du 1 ap d2u 1 8 (_ Buy
F=—watvEmtiala)l @
dv 1 dp 0%y 8 1 drvn\,
T = -p—,—arJrV[—a;z‘“Fa—r(? ar )] (1.2)
the equation of continuity is
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Here v is the radial velocity component, and u is
the component in the direction of the jet axis. We in-
troduce the dimensionless quantities

z
n=g

u v
U= o5 1=

r=o, t=a (1.4)

Here I is the wavelength of the perturbation, u®
is the average velocity over the cross section, v° is
the average rate of deformation, and T is the disin-
tegration time,

From (1.3) it follows that

° u’a

U=lo.

(1.5)

Substituting (1.4) and (1.5) in (1.1) and (1.2), at T =
= l,/u° we obtain

u®? 7 duy u°2 duy u°? duy 1 ap
e L R X s

l
() 2] L o (,, 2m)
+ vl‘:’;{ 9z,® + @ |7 o\ o ) ’

u’q 0% A 1 4
T {[ i® ]‘9212 + [ Lya ]‘; 5;1—(7'101)} :

When [, > a, omitting small terms, we have

ou ou ou 1 dp 1 9 ou
R Ll bl (B
% _y. (1.6)

We shall neglect the variation of axial velocity over
the cross section of the jet, and work with the average
velocity u°. Omitting the unimportant superscript,
from (1.8) we obtain

1.7)

Thus, we have eliminated the viscosity terms from
the equation of motion, Nevertheless, in the final solu-
tion the viscosity effect is taken into account in the re-

lation for the wavelength of the perturbation. We rep-
resent the radius of the free surface R in the form
(Fig. 6)

R =ay,+ a cosks. (1.8)

From the constant-volume condition it follows that

eV <a<a,

a* = a02 + 1/2“1'

0<a < V¥sa. (1.9)

Instead of (1,3) in our approximation it is more
convenient to write

as 9

W+7{<Su)=0 (S = nR?). (1.10)
Integrating (1.10) with respect to z with the follow-

ing boundary conditions:

u=20

2=0, u=0 z=1Y,,

and using (1.9), we obtain, neglecting 8a,/0t,

1 6a1

R W (1.11)

u = (2an sinkz -+ -%-01 sin 2kz) .
Substituting (1.11) into (1.7) and integrating with
respect to z, for the dimensionless displacement h =

= gy/a we obtain the equation

0th 1 4h 1 i—¢k 2 ~17/ dh\2
W+[r*(1_ha)z(71“1+h =) ](H) =
_(e—p)k (L 41—k 2\
= op; (7[1“1+h"1—h2) 1.12)

which is linear in (8h/8t)?. Here the value p, corre-
sponds to z = 0, and p to the value z = [/2.
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The pressure p is expressed in terms of the prin-
cipal radii of curvature of the normal section, Ry and
R,, as follows:

p=o0r=o(1/R, + 1/Ry).
We can simplify the expression
oo UEm)id(d+g)r—2rgs
- (4 + 02+ m3*

S N
=w T a1

ox § = Txoz

(m= 2L o
for the surface y = f(z, z) = [R? (5) — 22]'* in the case

of axisymmetric deformations. Without loss of gener-
ality, we set x = 0; then

h= S 1 (T o (T
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Using (1.8), in the region of capillary disintegra-
tion we obtain

LI (1.13)

Po— p = 2cak? Li ~ = |

Passing to the new independent variable v =
=k% V 2a0/ p, from Eq. (1.12) (with the initial condi-
tions h = hy and dh/dr = 0 at 7 = 0), we obtain

T = 1 (ka, hy) . (1.14}

The effect of the initial perturbations on the disin-
tegration time is estimated using the simplified equa-
tion with h < 1:

0%h

(L — a%)
E he

1
+ " T ha?k? (1. 15)
For the initial deformation period the solution of

(1.15) has the form

v = ak (=) In (7).

§2. We shall consider the effect of the surrounding
medium on the disintegration time. We assume that
the surrounding gas is inviscid and incompressible.
In view of the symmetry of motion the velocity poten-
tial satisfies the equation

(1.16)

_ o9 o9y _
A¢~8z2+r8r\ >ﬁ0 (2'1)

For convenience, we shall assume that the jet is
stationary, while the gas moves at velocity U, at in-
finity. The expression

@ = BK, (kr) sin kz — Uyz 2.2)

will be the solution of (2.1) satisfying this condition;
K, is a zero-order Macdonald function.
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For the velocities we obtain

P o= — %?_i = - BkK, (kr) sin kz,

w=—2% . _prK, (kr)coskz + U,
Considering that the velocity of longitudinal motion
is much greater than the transverse velocity, while
the variation of R along the length is large if the de-
formations are considerable, we can write the bound-
ary condition at the free surface in the form

oR aR oR
v:_a_t__{,__é?UOz.&Uo at r=R. (2-3)

From (1.8) and (2.3), substituting for R its mean
value over the length a, we obtain

U
B:al’K-o,—((;ca‘j. (2.4)
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The pressure is found from

—p, 20
D=0 5~ —

é P2 (UZ + uz);
P = p: 2 K, (ka) sin kz — 02 [1°B°K," (ka) sin®hz + Ugt —
- 2UBK,' (ka) kcoskz + B2 k*K,? (ka) cos? kz].  (2.5)

The pressure drop between the points z = 0 and
z = 1,/2 is equal to

_ Ko (ka) K (ka)
p— Py = pal*ka 250 h[z ak ] @.6)
When h « 1
p— o = 203U 2 2S5 eah. @.7)

Ko (ka)

From (1.13) and (2.7) at h «< 1 we obtain the con~
dition for the appearance of axisymmetric deforma-
tions:

Uy2a

xﬁ—pz-—zlm( (2.8)

atk? 1\ Ky (ka)
a?k? > K, (ka) °

When U = 0 we get disintegration under the influ-
ence of capillary forces. This corresponds to gk = 1.

All perturbations longer than specified by condition
(2. 8) are unstable., However, the highest deformation
rate is possessed by waves of a perfectly definite
length. The corresponding condition is obtained from
(1.12), (1.13), and (2.7):

3(ka)(p0_p)2’0' (29)

The general expression for the optimal wave num-
ber k is complicated, but, considering that in the
range in question (up to the appearance of wavelike
deformations) Ko(ka)/Ka(ka) varies only slightly, for
a jet of low-viscosity fluid we can obtain approximately

(2.10)

_ 3 Ko(ka) 9 Ko(ka) 1
ko= 7 wrgay ¥+ <1b Ko® (ka) * _z)

For the optimal deformations under the influence
of capillary forces the value » = 0 gives the results
obtained by Rayleigh [2]:

ka=—, f="" 2V I @.11)
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For a viscous fluid the wavelength of the optimal
deformation was obtained by Weber [1]:

= a2ty e

— o (B R

Vo |/

2Uopra

® (2.12)

Here 7y is the viscosity of the fluid, W is the Weber
number, and R is the Reynolds number,
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The equation of equilibrium of the gas-dynamic and
capillary forces for the curved jet [5]

G ) 2 Ks (ka)
— [ — s — (ka)’] = pakU, Ko7 (ka)
enables us to obtain the velocity of transition to wave~
like deformations. In this case

K; (ka)
Ky (ka)

s =1,

ka1, ~ —ka,

u:U(,(-pZ—a)“z =1.

G

(2.13)

In the general case of symmetrical disintegration
Py — p in expression (1. 4) represents the sum of (1.13)
and (2, 6).

§3. We shall now consider wavelike deformations.
With the appearance in the jet of wavelike perturba-
tions the relative velocity of the jet and the medium
begins to decrease. This leads to the appearance of
axisymmetric deformations with a different wave-
length. When the relative velocity is reduced by an
accompanying flow, the deformations with ke > 1 must
be suppressed by the surface tension. However, ob-
servation shows that such deformations are not sup-
pressed. The cosinusoidal shape of the surface be-
comes unstable, and is replaced with an axisymmetric
shape with a central cylindrical section (see Fig. 7).
For such shapes the variation of the radius of the free
surface at 0 = z < [;/4 is only slight. Thus, after in-
tegrating with respect to z with boundary conditions
u=0at z=0, we can obtain from (1.11) the following
expression for the velocity:

R
w=—2 55 3.1)
We substitute (3.1) in (1.7) and integrate (1.7)

with respect to z in the interval from 0 to 1,/4:

o (o — o] = e (3.2)

For the pressure drop we have

o]

=0, Po = 7>

I s g(a—R)

Po—P = —f @-3)

We transform Eq. (3.2) to dimensionless parame-
ters:

h 3/ oh 2
7~ ile) ==t

(=) hm 2

P12

(3.4)

The solution of (3.4) with initial conditions 8h/
/81 =10, h=hy at 7 = 0 can be written in the form

0

’ }14
S 5h \“ —
h,

0

1)— 4/L(_—1)] dh. (3.5)

Expression (3.5) determines the disintegration
time of wavelike deformations on the linear section.

To estimate the effect of the initial perturbations
we set h = 1 + Ah, with Ah « 1, and, neglecting the
cubes of small quantities, from (3.4) we obtain

h [k
— 171’_0— (3.6)

We shall now consider some examples.

1, The length of the continuous part of the jet in the region of
capillary disintegration, in accordance with (1.14), is expressed as
follows:

w
L= Ut =gt (ka, ho). (3.7

In Heinlein's experiments [1] water with the characteristics: o/p; =
= 70,8 cms/secz; 2 = 0,012-0.104 cm was taken as the low-viscosity

fluid."
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The observed wavelengths of the axisymmetric perturbauons had
values l0/2a = 4,3-7. The values of 7, computed for hy = 10-% and
ho= 103, corresponding in order of magnitude to the experiments of

[6] and the measurements of [1], are
v =125 Li=11.7 oW,

Tg =~ 946, Lo = 23.6 aWv.

The calculated and experimental [1, 3, 4]results are presented
in Fig. 8: 1) 2¢ =1 mm [4], 2) 24 =0, 66 mm [7], 3) 2a =0, 54 mm
[3], 4) 2a =0.51 mm [1]; water,

The low-viscosity condition

3W/R < 1 (3.8)

for water is almost always satisfied.
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2. When 3W/R > 1 in the case of a high-viscosity fluid it follows
from (1.12) that

_ 2h 1 4—h 2
Q~—a2k2(1—h2)z<71“m“rm> :

25 s
— k[ g
T k (aP1> (3,9)
Then
1 pla\llﬂ
z;:—}c—~(%~) T (h) . {3.10)

It follows from (3.10) that for the same initial jet radius the ratio
11 /ty for two high-viscosity fluids is given by

L e (3.11)
2 10sW 5

o] o

We shall compare the experimental results [1] for jets of glycerine
and castor oil (o;/0; = 35.7 cm®/sec?; aa/py = 52.7 cm®fsec?; Iy =
=60a; Iy = 124).

The ratio (3.11) gives a value t;/t, = 6 corresponding to results of
the experiments. Since

B2
lo = 2an ('E‘) ’

the time to disintegration

_ o3
t=gq Vﬁm (51;> ~ b2, (3.12)
which corresponds to experiment [1].

3. In the presence of wavelike deformations, toward the end of
deformation the velocity of the axisymmetric deformations, in ac-
cordance with (3.4), slows. Observations show that in the final mo-
ments shortwave perturbations that break up the jet appear on the
cylindrical section. Retardation of deformation begins to exert an
effect at h = 0,1. Therefore the calculations were performed for
0.1=h=h,.

We calculated values of 7 at hy= 0.99 and hy = 0.999.

The corresponding values are 73 = 1.88, 1 = 2.54. The second
maximum of the curve may be displaced along the linear section.

Its position depends on the accompanying flow, determined by the
number of kinks in the jet, which, in its turn, depends on the initial
perturbations.

However, in each individual case the first and second maxima
occur at the same value of w. This condition makes it possible to
express the velocity corresponding to the maximum length of the
continuous part in terms of the exit parameters:

T, N(—G—\X/J

\Zapy / (3.13)

Relation (3.13) is confirmed by experiments with diesel fuel [3],

On the section where gas-dynamic influences predominate (de-
scending branch of curve) at % > 1 we have the foilowing values of
the time and range from (1.14) and (3.6), respectively:

) P72 lo 1 p1 Y/z
=g (ar) Tk L (R e k.
The exit velocity exerts an effect only through the wavelength .
There is a discrepancy between the condition for the occurrence
of wavelike deformations (2.13) and experiment. This discrepancy
may be related to the assumption that the medium can be replaced
by an ideal fluid, whereas in reality the gas flow is turbulent.
For a low-viscosity fluid, instead of (2.13), the relation

[ 2020 "
= Uo| £ ) =1

gives good agreement with experiment.

Figures 8 and 9 present the results of calculations for all sections
of axisymmetric and wavelike deformations and the experimental
results obtained by the author and in [1, 4, 7], At large » (Fig. 9)
the values of 2a correspond to: 1) 2¢ = 2 mm, 2) 20 = 4 mm~author's
experiments, 3) 2a = 1 mm [4]; water.
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